If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-37=0
a = 3; b = 4; c = -37;
Δ = b2-4ac
Δ = 42-4·3·(-37)
Δ = 460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{460}=\sqrt{4*115}=\sqrt{4}*\sqrt{115}=2\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{115}}{2*3}=\frac{-4-2\sqrt{115}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{115}}{2*3}=\frac{-4+2\sqrt{115}}{6} $
| -5x=(-35) | | 314+42x=57x+57x+114-14x | | (-5x)=(-35) | | 120-64×=-x+348-6x | | -1/2y+2y=1 | | 7k+3.1=k+8 | | 3c-27=6(c-4) | | 8=2d-4/3 | | 9x+3.6=18 | | 13-3k=5 | | 2(x-4)=4x+3×+6 | | 4m=)8 | | (7x-19)(4x+2)=180 | | (7x-19)(4x+2)=90 | | 3x+5(-5+9)-4x=-5 | | 3^x+1=729 | | 27+x=5 | | X^2-(11/3)*x+(10/3)=0 | | 11=50-x | | (16x^2-4x-1)/(2x+1)=0 | | 2x/3-x/5=6(x-2)/ | | -32=8/7x | | 3(9-x)-(x+2)=5+6(x-5) | | x5-2x2-x3-2x2-20+24=0 | | 10y-5(1+y)=3(2y-2)–20 | | 190=n | | 13+n=9 | | 5x−3=x+7+3x | | 18,7+x+2x/3+2,3=50 | | 210=n | | 4(x+3)+9-5=32 | | 4/x=(14/350.80/120)=0 |